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OPTIMUM NUCLEAR ROCKET START-UP TO DEVELOP 

FULL POWER AT EXACT TIME WITH CONSIDERATION O F  NOISE 

C .  N .  Shen, Professor  of Mechanical Engineering 

F. G. Haag, Research Ass is tan t  i n  Mechanical Engineering 

Rensselaer  Polytechnic  I n s t i t u t e  , Troy, New York, U .  S. A .  

Ab s t ra c t 331a0 
A nuc lea r  rocket  may be requi red  t o  reach i t s  f u l l  

power (over  s i x  decades of power) w i th in  one minute. 

optimum switching o f  t h e  hydrogen flow and t h e  r e a c t i v i t y  

fro'm t h e  motion of  c o n t r o l  r o d  can be achieved t o  o b t a i n  t h e  

f u l l  power for a minimum t ime.  However, such a bang-bang 

system may be sub jec t  t o  inaccuracy i n  t i m e  o f  switching,  i f  

t h e  s t a r t i n g  power changes or excessive noise  i s  p r e s e n t .  A 

second optimum p r i n c i p l e  i s  appl ied such t h a t  t h e  system w i l l  

be optimum for t h e  remaining t i m e  independent of t h e  p a s t  

d i s tu rbance  or s t a r t i n g  power. This  optimum system wi th  feed- 

back i s  l e s s  s u s c e p t i b l e  t o  tandom no i se  i n  t h e  r e a c t o r  and 

An 

t h e  in s t rumen t s  than  t h e  switching system. 
I 



, 

In t roduc t ion  

Phys ica l  p rocesses  are  complex i n  n a t u r e  though man 
u s u a l l y  i d e n t i f i e s  t h e m  by modeling or s i m i l a t i o n .  The 
s tudy  of these p rocesses  i s  by i t s e l f  a r e a l  task:  - pro-  
c e s s e s  may be r ep resen ted  by o r d i n a r y  or p a r t i a l  d i f f e r -  
e n t i a l  equat ions  of s i n g l e  or m u l t i p l i e d  v a r i a b l e s .  Most 
of t h e s e  equat ions  a r e  so  complicated t h a t  s o l u t i o n s  may 
be obta ined  for s p e c i f i c  values of i n p u t s  by numerical  
means only.  Moreover., general  s c l u t i o n s  a r e  u s u a l l y  n o t  
a v a i l a b l e .  Thus i t  i s  of extreme importance to under- 
s t a n d  the  exac t  n a t u r e  of t h e  process  s o  t h a t  s i m p l i f i e d  
equat ions  may be deduced by n e g l e c t i n g  secondary terms 
i n  t h e  equat ions  t o  approximately s i m i l a t e  the phys ica l  
p rocess .  If t h e  process  i s  very w e l l  understood, a l o -  
wering of t h e  o r d e r  of t h e  d i f f e r e n t i a l  equat ion  i s  gene- 
r a l l y  p o s s i b l e .  Under these cond i t ions  a d i s c o n t i n u i t y  
o f  t h e  s t a t e  v a r i a b l e s  r ep resen t ing  t h e  process  can ap- 
p e a r  i n  the  mathematical  a n a l y s i s  o f  the  model f o r  a bang- 
bang c o n t r o l  while  t h e  a c t u a l  p h y s i c a l  p rocess  w i l l  n o t  
i n d i c a t e  any jump. It i s  on t h e  s a f e  s i d e  to a d j u s t  bo th  
t h e  s t a t e  v a r i a b l e s  and con t ro l  of t h e  system s o  t h a t  no 
d i s c o n t i n u i t y  e x i s t s  i n  the system whi le  t h e  c o n t r o l  i s  
k e p t  a t  t h e  neighborhood o f  t h e  bang-bang type.  The phy- 
s i c a l  p rocess  under con t ro l  may g ive  a de l ay  i f  t h e  con- 
trol has any i n e r t i a  i n  i t ,  e .g . ,  t h e  motion of a c o n t r o l  
r o d  i n  a n u c l e a r  r e a c t o r .  Hence a bang-bang c o n t r o l  can 
be r e a l i z e d  on ly  i f  t h e  con t ro l  rod  has  zero mass. 

For bounded c o n t r o l  v a r i a b l e s  i t  i s  u s u a l l y  t r u e  
t h a t  a n  optimum l i n e a r  system r e q u i r e s  t h e  c o n t r o l s  ope- 
r a t i n g  a t  t h e i r  extreme values,  i . e . ,  a bang-bang type of 
c o n t r o l  system. T h i s  i s  the f i r s t  k ind  of optimum c o n t r o l  
where t h e  c o n t r o l  v a r i a b l e s  swi tch  a t  c e r t a i n  boundaries 
of t he  s t a t e  v a r i a b l e s .  The c o n t r o l  v a r i a b l e s  do not  u s -  
u a l l y  swi t ch  as a predetermined e x p l i c i t  f u n c t i o n  of time 
and do n o t  e x h i b i t  any in te rmedia te  va lue  except  t h e  ex- 
tremes. A s  w e  a r e  lowering the  o r d e r  of d i f f e r e n t i a l  
equa t ions  for modeling t h e  process  one must bear i n  mind 
t h a t  t h e  d i s c o n t i n u i t y  does n o t  r e a l l y  hold f o r  e i t h e r  
t h e  process  or the  con t ro l .  It i s  thus  d e s i r a b l e  to i n -  
v e s t i g a t e  a method o t h e r  than swi tch ing  a t  c e r t a i n  boun- 
d a r i e s  of t he  s t a t e  va r i ab le s .  

A swi tch ing  boundary i n  t h e  t i m e  domain can be ob- 
t a i n e d  from the f i r s t  kind of  op t imiza t ion  i f  t he  s t a r t i n g  
c o n d i t i o n s  are  known. However, such a system w i l l  produce 
l a r g e  e r r o r  if t h e  system does n o t  s t a r t  w i t h  p roper  con- 
d i t i o n s  as  planned. Using t h e  p a r t i c u l a r  switching boun- 
dary a s  the  r e f e r e n c e  t r a j e c t o r y ,  a second optimum system 
can be devised  i f  t h e  system s t a r t s  a t  a reasonable  neigh-  
borhood of t h e  r e f e r e n c e  t r a j e c t o r i e s .  
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The d e v i a t i o n  from the r e fe rence  t r a j e c t o r y  a t  any 
s t a r t i n g  po in t  can be reduced cons iderably  by us ing  a 
second optimum procedure -- by the method of namic Pro- 

. The re- 
fe rence  t r a j e c t o r y  may exh ib i t  piece-wise cont inuous in -  
pu t  ( c o n t r o l )  under the f i r s t  optimum procedure.  However, 
the  f i n a l  i n p u t  ( c o n t r o l )  w i l l  be cont inuous.  By us ing  
a q u a d r i a t i c  index  of  performance, a t i m e  vary ing  feed- 
back c o n t r o l  system can be ob ta ined  s o  t h a t  any d e v i a t i o n  
of  t h e  s t a r t i n g  cond i t ion  can be e l imina ted  by the  o p t i -  
mum procedure.  T h i s  fo rces  the s t a t e  v a r i a b l e s  t o  fo l low 
t h e  scheduled r e f e r e n c e  t r a j e c t o r i e s  a s  c l o s e  as p o s s i b l e .  
Thus the  f i n a l  t r a j e c t o r y  i s  e s s e n t i a l l y  independent o f  
t h e  s t a r t i n g  cond i t ions .  Cont inui ty  r e l a t i o n s  f o r  t h e  
s t a t e  and c o n t r o l  va r i ab le s  are used a t  t h e  time when 
there  i s  a d i s c o n t i n u i t y  o f  the r e fe rence  c o n t r o l  v a r i -  
a b l e s  (bang-bang). By t h i s  procedure no d i s c o n t i n u i t y  
w i l l  occur  f o r  a l l  t h e  va r i ab le s .  The c o n t r o l  v a r i a b l e s  
are e s s e n t i a l l y  modified bang-bang w i t h  cont inuous smooth 
change i n s t e a d  of s t e p  func t ion  between t h e  extremes. 

Compared t o  the  method o f  s t a t e  v a r i a b l e s  the  c losed  
form s o l u t i o n  g iven  by the optimum c o n t r o l  law f o r  a nu- 
c l e a r  r e a c t o r  s t a r t - u p  has t he  advantage o f  be ing  l e s s  
suscep’. . ible to random noise  which may be p resen t  i n  the 
in s t rumen ta t ion .  These f a c t s  w i l l  be d i scussed  l a t e r .  

gramming(’) o r  Pontryagiri M a x i m i m  P r i n c i p l e  (3 

(1) S i m p l i f i c a t i o n  of the Processes .  

Nuclear r e a c t o r  a n a l y s i s  s t a r t s  w i t h  t he  t r a n s p o r t  

A s i m p l i c a t i o n  i s  made by 

equa t ion  ( i n t e g r a l  equat ion)  i n  which t h e  independent 
v a r i a b l e s  a r e  not  on ly  space and t i m e  b u t  a l s o  neut ron  
energy and s c a t t e r i n g  angle .  
i n t e g r a t i n g  and averaging t h e  ang le s  and d i v i d i n g  t h e  
energy spectrum i n t o  d i s c r e t e  energy groups,  which g i v e s  
t h e  m u l t i p l e  group d i f f u s i o n  equa t ions .  I f  t h e  energy 
groups a r e  reduced to two, t h e  fas t  and thermal neirtron 
groups, and t h e  e f f e c t  of one de l ay  neut ron  p recu r so r  
group i s  added then  the  p a r t i a l  d i f f e r e n t i a l  equat ions  
become ( 3 )  

0 

L =  

Y ( l  - p)Xf* 

VD2v - Ea2 

h 

h O 1  
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where : 

D j  = d i f f u s i o n  constant  

~j = removal cross  s e c t i o n  

v = neut rons  produced p e r  f i s s i o n  

f3 = delayed neutron f r a c t i o n  

h = p r e c u r s o r  decay cons t an t  

o J  = neutron f l u x  

c = p r e c u r s o r  concent ra t ion  

j = s c a t t e r i n g  cross s e c t i o n  
=S 

j = abso rp t ion  c ros s  s e c t i o n  'a 
z f j  = f i s s i o n  cross s e c t i o n  

V .  = neut ron  speed 

j = 1, thermal energy group 

j = 2,  f a s t  energy group 

J 

F u r t h e r  approximation can be made by i n t e g r a t i n g  
and averaging the  neut ron  f l u x  s p a t i a l l y ,  t h u s  t h e  s o  

c a l l e d  p o i n t  r e a c t o r  k i n e t i c  equat ions  a r e ( 6 ) :  -- 

where: 
0 = s p a t i a l l y  independent neut ron  f l u x  

AK = r e a c t i v i t y  

1 I; 

.. d' 
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D = neutron generat ion time, t h e  average time before  
one neutron generates  one prompt neutron o r  one 
p r  e cu r so r  

For r e a c t i v i t y  l e s s  than one d o l l a r  $ may be neglec-  
t e d  i n  Equation ( 2 - a ) ,  see for example Smets (lo). 
t h i s  approximation, e l imina t ion  of c between Equations 
(2 -a )  and (2 -b )  g i v e s ,  

With 

where 

Defining q a s  a funct ion of n and p, 

where po and Q 0  a r e  re ference  va lues  of p and @. Dif'feren- 
t i a t i n g  E u a t i o n  ( 4 )  and r e f e r r i n g  to t h e  d e f i n i t i o n  o f  dt dx , 
Equation 7 3 )  may be w r i t t e n ,  

where 
o r  m 

=E 

It i s  we l l  known t h a t  t h e  Kine t i c s  Equations (2 -a )  and 
(2 -b )  a r e  non l inea r  i n  @ a s  ou tput  and AK a s  i n p u t .  
manipulat ion of t h e  v a r i a b l e s  t h e  very simple l i n e a r  r e l a -  
t i o n  given i n  Equation (5) i s  obta ined .  The i n p u t  p i s  a 
f u n c t i o n  of t h e  c o n t r o l  m (Equation 6 )  and t h e  output  q i s  
a func t ion  o f  t h e  f l u x  4) and t h e  i n p u t  p (Equation 4 )  a s  
shown i n  F igure  1. 

By 

Using t h e  r e l a t i o n  
1 l - P = 1 + c 1  (7) 

An a l t e r n a t e  block diagram i s  shown i n  F igu re  2 i n  which 
q i s  obta ined  by measuring n a lone ,  e l i m i n a t i n g  t h e  coup- 
l i n g  w i t h  t h e  i n p u t  p. 
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Equation (5)  i s  of the f i r s t  o r d e r  while  Equation ( 2 )  
i s  o f  second o rde r .  By t h i s  approximation the  o r d e r  o f  
t he  d i f f e r e n t i a l  equat ion  i s  reduced by one. 
s i n c e  t h e  c o n t r o l  AK w i l l  no t  jump due to t h e  i n e r t i a  of 
t h e  c o n t r o l  rods ,  t h e  f l u x  @ should n o t  jump according to 
equat ion  [2-a) .  Therefore both  q and m a r e  continuous i n  
Equation 
bang-bang type.  

However, 

5 )  al though t h e  r e fe rence  c o n t r o l  M may be of 

( 2 )  The Reference Tra j ec to ry  - F i r s t  Optimizat ion.  

I n  o r d e r  to develop maximum power i n  t h e  s h o r t e s t  
p o s s i b l e  time w i t h  the  r e s t r i c t i o n  t h a t  t h e  r e a c t i v i t y  
w i l l  n o t  exceed a c e r t a i n  bound (say $0.701, t he  r e f e r -  

. , -  . - .  
ence c o n t r o l  M must be of  a bang-bang type i n  cons is tency  
w i t h  Equation (5  ) . 

A common r e a c t o r  s t a r t - u p  sequence i s  a s  fo l lows:  
the power i s  cons t an t  a t  a low l e v e l  p r i o r  to time CJ = 0. 
A t  CJ = 0 i t  i s  d e s i r e d  to i n c r e a s e  the  power a t  a cons t an t  

d@ p e r i o d  (@/ 
t h e r e a f t e r q a i n t a i n  t h e  power cons t an t .  
response f o r  t h i s  s t a r t - u p  program i s ,  

) u n t i l  a des i red  power l e v e l  i s  reached and 
The r e fe rence  

&,(a) = aCJ 

where T1 i s  a f i x e d  in te rmedia te  time and "a"  i s  a cons tan t .  
Cons i s t en t  w i t h  the  f a c t  t h a t  the d e s i r e d  i n p u t  and output  
w i l l  s a t i s f y  t h e  d i f f e r e n t i a l  equat ion ,  t h e  r e f e r e n c e  i n p u t s  
a r e  piece-wise continuous with a jump a t  CJ = T1, 

Ma(o) = a 

Mb(a) = 0 
(9) 

The piece-wise re ference  i n p u t  has  a phys ica l  i n t e r -  
p r e t a t i o n  i n  terms of  t h e  c o n t r o l  rod p o s i t i o n .  When t h e  
r e f e r e n c e  ou tpu t  i s  constant  r e a c t o r  pe r iod ,  t h e  r e f e r e n c e  
p o s i t i o n  of t h e  c o n t r o l  rods  i s  t h a t  p o s i t i o n  which r e s u l t s  
i n  cons t an t  p o s i t i v e  r e a c t i v i t y .  When the  r e fe rence  ou t -  
p u t  i s  cons t an t  power l eve l ,  t he  r e f e r e n c e  p o s i t i o n  o f  the  
c o n t r o l  rods  i s  for zero  r e a c t i v i t y .  
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( 3 )  The Second Optimization. 

c o n t r o l  system which minimizes t h e  i n t e g r a l  squared e r r o r  
from t h e  p re sen t  time t t o  a f i n a l  time T2.  
of dynamic programming app l i e s ,  t h a t  i s ,  no ma t t e r  what 
t h e  c o n t r o l  has been p r i o r  t o  t h e  p r e s e n t  time, t h e  c o n t r o l  
w i l l  be opt imal  for a l l  f u t u r e  time up t o  t h e  f i n a l  time 
T2. The r e fe rence  i n p u t  M(o) i s  piece-wise cont inuous.  
The s u b s c r i p t s  a and b r e f e r  to d e s i r e d  i n p u t s  and outputs  
for two d i f f e r e n t  time i n t e r v a l s .  Thus, 

The optimum c o n t r o l  system w i l l  be def ined  a s  the  

The p r i n c i p l e  

where: e ( t )  = e r r o r  c r i t e r i o n  

q ( a )  = output  s i g n a l  

Q(o)  = r e fe rence  s i g n a l  

M(o) = r e fe rence  i n p u t ,  which i s  piece-wise continuous 

o = dummy t i m e  v a r i a b l e  r e p r e s e n t i n g  f u t u r e  time 

t = p r e s e n t  time 

T2 = terminat ion time of t h e  c o n t r o l  system 

E, v = weight ing f a c t o r s  

There i s  one boundary condi t ion  f o r  t h e  value of q i n  
Equation (5 )  a t  t he  present  time CT = t .  
of t h e  output  i s  n o t  f i xed ,  bu t  t h e  n a t u r a l  boundary 
cond i t ions  w i l l  be imposed. 

The f i n a l  value 

OPTIMUM CONTROL LAW 

Converting to t h e  Pontryagin f o r m  we de f ine ,  

u ( t ; o )  = m(o) 

x 1 ( t ; o )  = d o )  
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and 

where : c1 = 0 and c2 = 1, 

is a minimum with respect to u(t;a). 
given in Appendix A, is, 

The Hamiltonian, 

h 

'c 

H = C Pi(t;o) fi 
i =1 

where pi(t;o) is the auxiliary variable. From Equation 
(121, 

For  S(t,T2) to be a minimum, H must be a maximum. F o r  
the unsaturated case, 
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o r  

where the asterisk denotes the optimum condition. 

DIFFERENTIAL EQUATIONS FOR THE AUXILIARY VARIABLES 

The previous section developed the optimum control 
law in terms o f  auxiliary variables. In order to complete 
the derivation of the optimum control law, it is necessary 
to develop the differential equations for the auxiliary 
variables. From Equation (A-6) of APPENDIX A, 

dPl.(tW) 
= 2E$2(t;a)[Q(o) - xi(t;o)I (194 do 

dP2 h a )  = o  do 

From Equation (lgb), p2(t;o) is not a function o f  o,  
but may be an arbitrary function of the parameter t, 
pZ(t;p) = f ( t ) ,  such that the end point condition, Equa- 
tion (A-4) is satisfied for all t .  
be satisfied f o r  all t, p2(t;o) must be constant. With 
c2 = 1 and Equation (14), we have, 

For Equation (A-4) to 

p2(t;a) = -1 ( 2 0 )  

By substituting Equation (20 

the quantity u*(t,o) f o r  do t 
Equation (19a) with respect to o ,  we have, 

into Equation (18) and then 

by differentiating 
dxl t;o) 

The desired input and output should in general satis- 
fy the original system differential equation. 
that minimization of the error criterion is compatible 
with the system dynamics. 
tial equation is not satisfied by the desired input and 
output, it is not possible to reduce the error criterion 
to zero. 

This insures 

If the original system differen- 
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With this requirement, 

dQ 0 = M(a) 
do 

and Equation (21) becomes 

where co2 = t / V .  

For the time region T1 4 t < T2 the solution to Equa- - - tion (23) is, 

where Ab and Bb are arbitrary constants to be determined. 
From Equations (A-4) and (14) the natural boundary condi- 
tion, which applies to t h e  free terminal point problem, 
is, 

substituting Equation (27) into Equation (lga), 
q) u) coshCdT2 - (0111 

xi(t;a) = Qb(0) + T f 
COSh[u(T2 - t)] 

Using the equivalence between xl(t;o) and q(o) expressed 
by Equation (ll), Equation (28) becomes, 

The constant Bb is evaluated by requiring q(a) to equal 
the measured value q*(t) at a = t, 
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Substituting Equations (27) and (30) into Equation (18) 
with the change in variables given (11) , 

m*(O) = Mb(0) - cu[Qb(t) - q*(t)] { sinh[cu(a-t)] 
- 

(311 - tanh[cu(T2 - t)] cosh[cu(o - t)]) 

and in particular at the present time o = t, 

The equivalent expression for m*(t) in the f i r s t  time 
interval t 4 T1 is derived in APPENDIX B. - 

With the desired input and output given by Equations 
(8) and (g), the control laws f o r  the two time intervals 
become, 

- q*(t)] tanh[cu(TZ- t)] m*(t) = w[aT1 T1 < t 4 T2 (33) - - 

m*(t) = - cosh[cu(T2 - T1)] sech[cu(T2 - t)]) 

+ o[at - q*(t)] tanh[cu(T2 - t)] (34) 

(4) Random Noise Considerations. 

The optimum control law given by Equations (33) and 
(34) can be implemented as shown by the block diagram in 
Figure 3. Random noise(2), kn(t), may be introduced into 
the feedback signal, kq(t), by the instrumentation such 
as the neutron detectors. In this section, the amount of 
e r r o r  introduced into the optimum control system shown in 
Figure 3 will be compared to the amount of error intro- 
duced into a typical s ta te  variable switching system 
shown in Figure 4. 

The actual system output, ky(t), is related to the 
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measured system output  a s  follows, 

- 
The average random noise  i s  assumed t o  be zero,  k n ( t ) - t O .  

The low pass  f i l t e r  c h a r a c t e r i s t i c  of t h e  process  causes a l l  
a c t u a l  system output  records to approach a s i n g l e  value,  
Y ( t ) ,  i . e . ,  

The a c t u a l  ou tput  approaches t h e  average measured 
system output ,  

where t h e  v a r i a b l e  x l ( t )  may be considered to be de terminis -  
t i c  f o r  t h e  op t imiza t ion  problem. The v a r i a b l e  q ( t )  i s  
r e se rved  for t h e  random process .  

k 

The formula t ion  of t h e  optimum c o n t r o l  law chan e s  
very  l i t t l e  f o r  t h i s  case .  

q u a n t i t y  q ( a )  becomes kq(o)  where, 

I n  Equations (5)  and (107 t h e  - 
which i s  i d e n t i c a l  to t h e  second l i n e  of Equation (ll), i f  

q ( a )  becomes kq(a) .  It can be proved t h a t  t h e  previous 
a n a l y s i s  ho lds  a l s o  f o r  t h i s  p a r t i c u l a r  (though common) 
type  of random process .  

The error w i l l  be def ined a s  t h e  d i f f e r e n c e  between 
t h e  d e s i r e d  system output  and t h e  a c t u a l  system ou tpu t ,  

a t  - k ~ ( t )  f 

The a u t o c o r r e l a t i o n  func t ion  of t h e  random no i se  i s  not 
k- k- * ze ro ,  t hus ,  [ y ( t ) ]  f [ q ( t )  ] . From Figure  3 and Equations 
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for T1 - C t - < T2, where b ( t )  = w tanh[u(TZ - t)]. 
only the effect of the noise is under consideration, the 
last term in Equation (4Oa) may be dropped, which with 
Equations (39) leads to t h e  following result, 

Because 

where, t 

0 

If the output signal and noise re not corr 
the mean-squared value of E(T~) is given by (5 1 , 

lated, 

where ynn(aJ@) is the autocorrelation function of the noise. 
When the random process is stationary, the autocorrelation 
function becomes r , ( a - B ) .  

m(T2-t) will be large, therefore tanh[u(Ts-t)] will be 
approximately unity except near the neighborhood of t = T2. 
Thus the transfer function from Equation (41) becomes, 

For most of the operation of the optimum control system 
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For a stationary process, a typical autocorrelation 
function for the noise may be given as, 

where K and 5 are constants. 

and the input-output relations to be, 

The autocorrelation function 
of the output, y E E ( 7 ) ,  is found f rom the Weiner-Khinchin ( 2  1 

(45) 

and the mean-square error is evaluated by letting T equal 
zero, 

Both cu and < are positive, therefore the mean-square error 
is less than K. 

For the state variable switching system, k q ( t )  is 
compared to Q(T2), and the switch is positioned off when 
the state variable k q(t) equals the desired output Q(T2). 

In Figure 4 the error becomes, 

k E(T2) = Q(T2) - ky(T2) = [Q(T2) - k q(T2)I - k n(T2) 
(47) 

and the mean-square error is, 

With the autocorrelation function of Equation (44), the 
mean-square error is, - 

2 

Ek~(T2)] = ynn(.r=0) = K (49) 

For this case, the mean-square error is always less for the 
optimum control system than for the state variable switching 
system. 
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For unit white noise, the autocorrelation function 
is given by, 

When the initial error is zero, substitution of Equation 
(50) into (43) yields, 

Because the hyperbolic tangent never exceeds unity, 
the mean-square error has an upper bound. For  comparison, 
the mean-square error in the state variable switching 
system with white noise is unbounded f o r  all u. 

DISCUSSION 

Optimization techniques were applied to the simplified 
nuclear reactor kinetics equations with a specialized 
piece-wise continuous reference input. The closed form 
optimum control system is superior to the state variable 
switching system in the following particulars: 

a) When random noise is added to the output, the optimum 
control system tends to have a smaller mean-square error 
than the state variable switching system. 

b) For  nuclear rocket control, due to the inertia of the 
control rods, abrupt changes in position required by the 
state variable switching system, are physically impossible. 
The continuous closed form optimum control system leads to 
a more accurate physical representation of the control rods. 

e) 
in the field of nuclear propelled rockets. For  this appli- 
cation, noise introduced into the output will affect the 
rocket thrust. Noise in the state variable switching system 
may cause switching at a time different from originally 
scheduled and may completely change the thrust program. 
The closed form optimum control system will tend to return 
to the original thrust program at the right time while the 
noise subsides. 

The optimum control appears to have greatest potential 
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APPENDIX A 

Pontryagin Maximum Principle ( 4 ) J  (7 )  

A system operates between time 0 = t and 0 = T2. 
The system is described by a set o f  differential equations, 

where xi(o) are state variables, t is treated as a para- 
meter and uk are control Variables. 
minimize, 

The problem is to 

n+l 

i=1 
S(T2) = Z CiXi(O=T2) (A-2 ) 

with respect to the control variables. Constraints may 
exist on the control variables, c(o)~U, where U is the 
admissible class of control functions in r space, and c (a )  
is the vector control function with components uk(o). 

An auxiliary variable p,(o) is defined, 

(A-3 1 

The free terminal condition or natural boundary conditions 
are , 

Pi(a=T2) = - Ci i = 1J2,.0.nJn+l ( A - 4 )  

A sufficient condition f o r  a minimum of S is that H 
be maximized with respect to the control vector at all 
times. 

The sets of differential equations for the system 
and for the auxiliary variables are related to H by, 
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APPENDIX B 

Optimum Control Law for First Order Systems 

The first piece of the piece-wise continuous input 
prior to time T1) is given by the solution to solution 

Equation [23), 

pl(o) = Aa cosh[~u(o-t)]+ Ba sinh[o(o-t)], t < T1 (B-1) 

Substituting Equation (B-1) into (19a) gives, 

xl(t;o) = Qa(o) + Lu CAa sinh[o(o-t)] + Ba cosh[u(o-t)]] 
(B-2 1 

With the equivalence between xl(t;o) and q(o) expressed 
by Equation (ll), (B-2) becomes, 

q*(o) = Qa(o) + $[Aa sinh[u(o-t)] + Ba cosh[m(o-t)]) 

The constant Ba is evaluated by requiring q(o) to be equal 
to the measured value q * ( t )  at o = t, 

(B-3) 

and, 

q*(o) = 

The last two boundary conditions are that the output signal 
and its derivative be continuous at time T1. 
tions (29) and (B-5), and also equating their derivatives 
at o=T1 and eliminating % to solve f o r  Aa gives, 

+ 2 Aa Lu sinh[u(o-t)] - [Qa(t) - q*(t)]cosh[w(o-t)] 
(B-5 1 

Equating Equa- 

where: 0 = tanh[m(T2-T1)] 



- 2 0  - 

?,bl = cu 1 sinh[cu(T1-t)] +Ocosh[w(T1-t)]\ 

?,b2 = cosh[cu(T1-t)] + Osinh[m(T1-t)] 

Substituting Equation (B-4) into (B-1)  gives, 

Pl(t;l.L) = - - 2E [Qa(t)-q*(t)] sinh[cu(o-t) + Aa cosh[u(a-t)] cu 

Substituting Equations (B-6)  and (B-7) i n t o  (18) using (20) 
and with the change in variables given by (11) at a=t,  
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